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Background: Motor learning is impaired in Parkinson’s disease (PD), with patients
demonstrating deficits in skill acquisition (online learning) and consolidation (offline
learning) compared to healthy adults of similar age. Recent studies in young adults
suggest that single bouts of aerobic exercise (AEX), performed in close temporal
proximity to practicing a new motor task, may facilitate motor skill learning. Thus, we
aimed at investigating the effects of a single bout of aerobic cycling on online and offline
learning in PD patients.

Methods: 17 PD patients (Hoehn and Yahr 1 – 2.5, age: 64.4 ± 6.2) participated
in this crossover study. Immediately prior to practicing a novel balance task, patients
either performed 30 min of (i) moderate intensity (60–70% VO2max) aerobic cycling, or
(ii) seated rest (order counterbalanced). The task required patients to stabilize a balance
platform (stabilometer) in a horizontal position for 30 s. For each experimental condition,
patients performed 15 acquisition trials, followed by a retention test 24 h later. We
calculated time in balance (platform within ± 5◦ from horizontal) for each trial, and
analyzed within- and between-subjects differences in skill acquisition (online learning)
and skill retention (offline learning) using mixed repeated-measures ANOVA.

Results: We found that the exercise bout had no effect on performance level or online
gains during acquisition, despite affecting the time course of skill improvements (larger
initial and reduced late skill gains). Aerobic cycling significantly improved offline learning,
as reflected by larger 24-h skill retention compared to the rest condition.

Conclusion: Our results suggest that a single bout of moderate-intensity AEX is
effective in improving motor skill consolidation in PD patients. Thus, acute exercise
may represent an effective strategy to enhance motor memory formation in this
population. More work is necessary to understand the underlying mechanisms, the
optimal scheduling of exercise, and the applicability to other motor tasks. Further, the
potential for patients in later disease stages need to be investigated. The study was
a priori registered at ClinicalTrials.gov (NCT03245216).

Keywords: cardiovascular exercise, motor learning, online learning, offline learning, memory, neuroplasticity,
neurorehabilitation, Parkinsonism
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder
characterized by a loss of dopaminergic neurons in the basal
ganglia. Major motor symptoms include bradykinesia, tremor,
rigidity, and postural instability, resulting in slowed and
unsecure movement control (Jankovic, 2008). Consequently,
these patients suffer from various limitations in daily life
activities, reduced mobility and have a substantially increased
risk of falling (Fasano et al., 2017). Besides their motor
impairment, cognitive deficits are highly prevalent in PD
patients, including disturbed visuospatial perception, executive,
and memory functions (Moustafa et al., 2016). These cognitive
deficits are strongly interrelated with motor symptoms (Lord
et al., 2014; Kelly et al., 2015; Moustafa et al., 2016), and have also
been associated with impaired motor learning in PD (Price and
Shin, 2009; Vandenbossche et al., 2009).

Pharmacological treatment can improve patients’ motor
impairments, however, response to dopaminergic therapy
diminishes with time, and several features of motor control
are refractory to pharmacological treatment (Galna et al.,
2015). This highlights the importance of complementary non-
pharmacological treatments with exercise and physiotherapy
playing a key role in this context (Tomlinson et al., 2013; van
der Kolk and King, 2013; Abbruzzese et al., 2016). As motor
rehabilitation involves repeated practice of movement skills, it
constantly induces motor learning processes (Abbruzzese et al.,
2016). With respect to the ability to (re-)learn motor skills, PD
patients demonstrate clear deficits compared to healthy adults
of similar age (Nieuwboer et al., 2009; Clark et al., 2014). The
pathophysiological basis of these deficits is attributable to the loss
of dopamine in the caudal basal ganglia (Petzinger et al., 2013),
which are heavily involved in learning motor skills (Hikosaka
et al., 2002; Doyon et al., 2009). Corticostriatal circuits are not
only crucial in the early phases of acquiring new skills, but
also have high relevance for the early consolidation of motor
memory (associative striatum), as well as the development of
automaticity (sensorimotor striatum) (Doyon et al., 2009; Ashby
et al., 2010). These later phases of motor skill retention are
particularly impaired in PD, further emphasizing the role of
the basal ganglia in motor memory consolidation (Doyon, 2008;
Marinelli et al., 2017). Critically, motor learning is not improved
by anti-Parkinson medication, which emphasizes the need for
alternative treatment options (Marinelli et al., 2017).

These circumstances highlight the importance of developing
methods to facilitate motor memory formation and consolidation
in PD. Rapidly growing evidence suggests, that acute aerobic
exercise (AEX) enhances motor skill learning in healthy adult
populations (Taubert et al., 2015; Roig et al., 2016), when
performed in close temporal proximity to motor practice (Statton
et al., 2015; Thomas et al., 2016a). More specifically, short
bouts of cardiovascular exercise, performed immediately prior
to (Roig et al., 2012; Mang et al., 2014; Skriver et al., 2014;
Statton et al., 2015; Snow et al., 2016; Stavrinos and Coxon,
2017) or following (Roig et al., 2012; Thomas et al., 2016a,b;
Lundbye-Jensen et al., 2017; Dal Maso et al., 2018) motor
skill practice have shown to improve motor skill acquisition

(online learning) and consolidation (offline learning). Several
underlying mechanisms on the molecular and systems level
have been discussed (Taubert et al., 2015). These include
increased arousal and cerebral blood flow following acute AEX,
stronger expression of neurotrophic factors (e.g., brain-derived-
neurotrophic-factor, BDNF), decreased intracortical inhibition,
and enhanced corticospinal excitability (Taubert et al., 2015).
Recently, first studies investigated the effects of an acute exercise
bout in rehabilitation settings. Nepveu et al. (2017) found
enhanced offline gains of a visuomotor tracking task in elderly
stroke survivors when skill practice was followed by exercise on a
recumbent stepper. In contrast, Charalambous et al. (2018) were
not able to find beneficial effects on a motor adaptation task
in stroke patients with a short 5-min bout of either treadmill
walking or a total body exercise.

First pilot work in human PD patients showed improved
motor memory function following 12 weeks of aerobic training
(Duchesne et al., 2015, 2016), however, to date evidence
on the facilitation effects of acute exercise on motor skill
learning is lacking. Petzinger et al. (2013) proposed a model
for motor skill practice and AEX working synergistically to
induce neuroplasticity in PD. They suggest that exercise-induced
mechanisms in the brain provide an optimal milieu for practicing
and optimizing motor skills. Growing evidence from animal
PD models support this link between exercise and increased
neuroplasticity (Jakowec et al., 2016).

Consequently, we aimed at exploring the effects of a single
bout of AEX on motor skill learning in early PD patients.
For this, patients either performed a single bout of moderate-
intensity cycling or seated rest immediately prior to practicing
a novel balance task. We hypothesized that the acute exercise
bout would lead to (i) larger performance improvement during
skill acquisition (online learning), and (ii) increased motor skill
consolidation (larger offline gains) after 24 h.

MATERIALS AND METHODS

This study was preregistered (Registration Number:
NCT03245216) at ClinicalTrials.gov. The registration protocol is
accessible at https://clinicaltrials.gov/ct2/show/NCT03245216.

Participants
A total of 17 early to mid-stage PD patients volunteered to
participate in this study (Supplementary Figure 1). Patients gave
written informed consent prior to participation, and the study
was approved by the local ethics committee (reference number:
125_17B) of the FAU Erlangen-Nürnberg, Germany. Patients
gave written informed consent prior to study participation
according to the declaration of Helsinki. Patients were eligible
for participation if they had (i) a Hoehn and Yahr score of <3;
(ii) a score of ≤1 in the UPDRS item ‘postural instability’; (iii)
were able to stand and walk independently; and (iv) were not
familiar with the balance platform. Criteria for exclusion were
(i) higher level of cognitive impairment indicated by a score of
<21 in the Montreal Cognitive Assessment (MoCA) (Dalrymple-
Alford et al., 2010); (ii) other clinically relevant neurological,
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internal or orthopedic conditions besides Parkinsonism that
would interfere with the exercise paradigm or motor learning
task; (iii) musculoskeletal conditions or surgery 1 year before the
study enrolment; (iv) smoking >10 cigarettes/day or drinking >6
cups of coffee/day or >50 g of alcohol (equivalent of two glasses
of wine) consumption/day (Winter et al., 2007).

Experimental Design
We implemented a crossover design in this study (Figure 1).
Accordingly, patients participated in two separate experiments,
requiring them to practice a motor skill preceded by one of two
different experimental conditions: AEX or seated rest (REST).
The order of experiments was counterbalanced, separated by
a six to 8 weeks washout period. Patients were blinded to the
researchers’ hypotheses regarding the effects of the different
experimental conditions. We used block randomization stratified
by gender (male/female) and age (<62/>62) to define the order
of experimental conditions, since these two factors may modulate
the effects of AEX on cognitive performance (Smith et al.,
2005) and memory formation (Kamijo et al., 2009; Kramer and
Colcombe, 2018). Each of the two experiments included (i) an
acquisition session where the motor skill was practiced, followed
by (ii) a retention test 24± 2 h later. PD patients were instructed
to refrain from vigorous physical activity 48 h prior to and 24 h
after the acquisition session, as well as from caffeine, alcohol and
nicotine uptake 24 h before and after the acquisition session.
Since the whole experimental routine was supervised by the same
researcher (PW), blinding to the experimental condition was not
possible.

Pre-examinations prior to each experiment included
assessment of anthropometric and demographic data, motor
function using the motor part of the Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS; Goetz et al., 2008), cognitive
function using the MoCA (Dalrymple-Alford et al., 2010), and
self-reported physical activity level using the IPAQ (Craig et al.,
2003). All assessments were performed by a trained exercise
therapist (PW) and with patients on medication.

After each motor practicing session (acquisition, retention),
participants completed the National Aeronautics and Space
Administration-Task Load Index (NASA-TLX) (Hart and
Staveland, 1988). The NASA-TLX is a visual analog scale to
assess the subjectively perceived workload of a task. It consists
of six dimensions: mental demand, physical demand, temporal
demand, performance, effort, and frustration. Each dimension
can be rated on a twenty-step bipolar scale ranging from 0 (not
demanding) to 20 (extreme demanding). Further, the average of
the six dimensions can be calculated to determine the Raw Task
Load Index (RTLX), which is a measure of the overall subjective
workload (Hart, 2006). The NASA-TLX has been already used
during learning of a balancing task and has shown to be useful to
assess task difficulty (Akizuki and Ohashi, 2015).

Additional measures were taken in order to control for
variables that might influence the motor learning process. This
included a simple reaction time task (Deary et al., 2011) to test
patients alertness after the experimental stimulus. Before and
immediately following each experimental stimulus (AEX/REST),
participants had to press a button as fast as possible with their

index finger of the preferred hand when a cross appeared in a
white box on the computer screen. A series of 20 presentations
was given and reaction times averaged across trials. Additionally,
sleep quality and daytime sleepiness were assessed using the
Epworth Sleepiness Scale (Johns, 1991) and the Pittsburgh Sleep
Diary (Monk et al., 1994).

Motor Learning Task
We used a dynamic balancing task to examine patients’ motor
learning performance. The stabilometer is widely used to study
motor learning (Wulf et al., 2003; Lewthwaite and Wulf, 2010;
Kiss et al., 2018), including PD populations (Chiviacowsky
et al., 2012; Sehm et al., 2014). The device consists of a
107 × 65 cm wooden platform (stability platform; Lafayette
Instrument Europe; Loughborough, United Kingdom), which
is mounted on a fulcrum and has a maximum deviation of
15◦ to either side. Participants are required to stand with both
feet on the platform and try to keep the platform as close to
the horizontal as possible during each 30 s trial (Chiviacowsky
et al., 2012). A millisecond timer measured time in balance,
which is the time patients were able to keep the platform within
±5◦ from horizontal during each 30-s trial. Since the way this
motor task is instructed may affect learning outcome (Wulf
and Lewthwaite, 2009), standardized formulations were used
to present the task to the participants, excluding any forms of
motivation or the direction of attentional focus. We further
provided rigidly standardized feedback on the achieved time
in balance (knowledge of results) immediately after each trial
but did not give any additional information on the patients’
performance strategy. Patients were secured with a safety harness
and instructed to stand in a comfortable position (foot position
was marked to ensure standardized positioning during all tests).

On the first day of each experiment (Figure 1), patients had
a baseline block (2 trials) prior to the experimental condition
(AEX, REST) in order to familiarize the patients to the task and
to establish baseline performance. The acquisition phase started
within 5 min after the experimental condition (immediately after
the reaction time test). The acquisition phase included 15 practice
trials (30 s), clustered into 5 blocks of 3 trials, with 60 s rest
between trials and 120 s rest between blocks. The 24-h retention
test included another 5 blocks of 3 trials (trial 1 of first block
removed from data analysis to account for potential warm-up
effects). All experimental session were supervised by the same
researcher (PW), with patients on medication and at the same
time of the day. The ‘on’ state was chosen in order to ensure
that patients were able to securely perform the motor task, and in
order to reduce the potential influence of motor symptoms (i.a.,
tremor).

Exercise Protocol
Participants underwent cardiologic screening 7–14 days prior to
the experiment. The procedure included a graded exercise test
(GXT) performed on a stationary cycle ergometer and supervised
by a cardiologist. Staring at 25 Watts and a constant pedal rate of
∼60 rpm, load was stepwise increased by 25 Watts every 3 min
until exhaustion, and heart rate (HR) response and spirometry
data (VO2/VCO2) were recorded continuously.

Frontiers in Aging Neuroscience | www.frontiersin.org 3 October 2018 | Volume 10 | Article 328

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00328 October 17, 2018 Time: 13:59 # 4

Steib et al. Exercise and Motor Learning PD

FIGURE 1 | Schematic overview of the experimental design. Figure illustrates the experimental flow. Pre-examinations included a clinical assessment of the patients’
neurological and cognitive status. Subsequently, patients participated in two separate experiments, including either the experimental (cycling) or control condition
(rest). The order of experiments was counter-balanced and separated by 6–8 weeks (cross-over design). Each of the two experiments included an acquisition phase
(session 1), followed by a retention test (session 2) 24 h later. Cardiac screening included a graded exercise test (GXT) and was performed prior to the experiment
including the cycling condition (AEX).

During the experiment, the AEX condition comprised a 5-min
warm-up (intensity was progressively increased until target HR),
followed by 25 min of pedaling at 60–80 rpm and a HR between
60 and 70% of pre-test HR at VO2max. Similar protocols have
been used in studies of young healthy adults, and demonstrated
improved motor skill learning (Chartrand et al., 2015; Statton
et al., 2015; Snow et al., 2016).

Heart rate was continuously recorded using a HR monitor
(Polar RS800). Additionally, patients’ subjective level of perceived
exertion (Borg scale 6–20) and blood pressure was recorded every
3 min.

Statistical Analysis
All statistical analyses were performed using IBM SPSS Statistics
version 25.0 (IBM Corp; Armonk, NY, United States) and the
alpha level set at p≤ 0.05. Normality, variance homogeneity, and
sphericity of the data were checked where appropriate.

Baseline Performance and Order Effects
We compared baseline performance between the two
experimental conditions (AEX, REST) and between the two
experiments (first, second) using independent samples t-tests.
Similarly, we tested the immediate effect of AEX on skill
performance by comparing changes from baseline to the first
acquisition block between conditions (AEX, REST). The effect
of AEX on alertness was explored by comparing reaction times
changes (from pre- to post-exercise) between conditions using
independent samples t-test.

Online and Offline Motor Skill Learning
The effect of AEX on motor skill learning was examined by
separate mixed ANOVAs testing for the between-subject factor
Condition (AEX, REST) and the within-subject factor Blocks.
Since baseline skill levels (baseline block) were (i) higher at
the second compared to the first experiment in this cross-
over design (T32 = −3.003, p = 0.005), and (ii) significantly
associated with online (F1,31 = 17.832; p < 0.001) skill gains,
baseline performance was entered as a covariate into the model.
Consequently, the effect of AEX on motor skill acquisition
(online learning) was tested in a 2 (AEX, REST) × 5 (acquisition
blocks 1–5) model. Effects of AEX on offline learning was
analyzed in a 2 (AEX, REST) × 2 (acquisition block 5, retention
block 1) model. Additionally, retention performance was tested
in a 2 (AEX, REST) × 5 (retention blocks 1–5) model, including
the last acquisition block (block 5) as covariate.

RESULTS

Baseline characteristics and exercise data of the 17 enrolled PD
patients (13 males, 4 females) are presented in Table 1. The
average workload during the AEX bout was 61.7 Watts (range:
11.0–93.1), with patients performing at a HR of 105 bpm (range:
76–129) and a RPE of 13.5 (range 11–15).

There were no significant differences between the two
experimental conditions in the NASA-TLX sum score
(acquisition: T32 = −0.258, p = 0.798; retention: T32 = −0.947;
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p = 0.351) or any of its sub-categories (Table 2), suggesting
that self-perceived workload during the balance task was not
affected by AEX. Further, reaction time did not significantly
change from pre- to immediately post exercise (T16 = 1.396,
p = 0.182), and change scores were not different from the REST
condition (T32 < 0.641, p = 0.526), indicating that alertness at
the beginning of motor practice was not affected by AEX.

Balance performance at baseline (baseline block) did not
differ significantly between the two experimental conditions
(T32 = −0.753, p = 0.457). Further, changes in skill performance
from the baseline block to the first practice block (T32 = 1.252,
p = 0.220) were not affected by the acute AEX bout.

Effects of Aerobic Exercise on Online
Learning
A significant main effect for Block existed (F4,124 = 3.53,
p = 0.009, η2 = 0.102), confirming that patients increased their
balance time throughout the acquisition session (Figure 2A).
The overall performance level during practice was similar in
both experimental conditions, as indicated by the absence of a
Condition effect (F1,31 < 1, p = 0.842). The skill improvement
from baseline to the last acquisition block was comparable
between the two conditions (AEX = 18.1%, REST = 16.4%;
T32 < 1, p = 0.959), suggesting that AEX had no effect on absolute
online learning gain (Figure 2B). A significant Condition× Block
interaction (F4,124 = 2.73, p = 0.032, η2 = 0.081) indicated that
the time course of skill improvements differed between the two
experimental conditions. Contrasts suggest that AEX led to rapid
initial performance increases, which were attenuated during late
practice (block 4 vs. previous: F1,31 = 4.770, p = 0.037; block 5 vs.
previous: F1,31 = 7.020, p = 0.013).

Effects of Aerobic Exercise on Offline
Learning
Offline learning was assessed by comparing change in balance
performance from the last acquisition block to the first retention
block (Figure 2C). There was no significant main effect for
Condition (F1,32 < 1, p = 0.990) or Block (F1,32 = 1.736,
p = 0.197). The significant Condition × Block interaction
(F1,32 = 10.734, p = 0.003, η2 = 0.251) suggests that offline gains
differed between conditions. Posthoc tests revealed that balance
performance significantly decreased in the REST condition
(−7.8%, T16 = −2.710, p = 0.015), while patients in the AEX
condition sustained their performance level from practice to
retention (+3.5%, T16 = 1.845, p = 0.84).

In addition to offline gains, we analyzed further skill changes
during the retention session. A significant main effect for Block
(F4,124 = 2.694, p = 0.045; η2 = 0.080) and a significant
Condition × Block interaction (F4,124 = 3.048, p = 0.028;
η2 = 0.090) existed. This suggests that patients continued
to improve their balance time during the retention test,
but differences existed between conditions. Contrasts revealed
that skill gains during retention session were weaker in the
AEX compared to the REST condition (block 1 vs. block 5:
F1,31 = 5.312, p = 0.028). However, skill level (main effect
Condition: F1,31 = 2.505, p = 0.124) and overall skill improvement

from baseline were comparable between the AEX and REST
condition (AEX = 25.1%, REST = 20.1%; T32 < 1, p = 0.721).

DISCUSSION

To our knowledge, this is the first study to examine whether
a single bout of moderate-intensity cycling enhances (i) motor
skill acquisition (online learning) or (ii) motor skill consolidation
(offline learning) in PD patients. We found that the exercise bout
had no effect on performance level or overall skill improvement
during acquisition, thus not confirming our initial hypothesis.
However, cycling seemed to affect the time course of skill
change, which was expressed by larger initial and weakened
late performance gains during acquisition (Figure 2A). In
line with our hypothesis, offline learning was improved in
the AEX condition, which indicates improved motor memory
consolidation in these patients. This finding is of great
importance, given that these patients have particular deficits in
motor skill learning compared to healthy elderly of similar age.

Effect of Aerobic Exercise on Online
Motor Learning
We found that AEX did not improve online learning of
PD patients. In fact, ANOVA results suggest that timing of
improvements throughout practice was affected by AEX. Online
gains appeared to be larger during the initial practice phase,
and less pronounced during late practice (block 4 and 5) in the
AEX condition. Since overall skill improvement during practice
session, i.e., change from pre-exercise baseline to last acquisition
block, was comparable between the AEX (+3.5± 4.8 s) and REST
condition (+3.4 ± 5.1 s), AEX does not seem to negatively affect
online skill learning.

Previous studies on the effect of a single bout of AEX on skill
acquisition involved young healthy individuals, and findings were
inconsistent. While some authors demonstrated increased online
learning gains (Chartrand et al., 2015; Statton et al., 2015) or
overall skill level (Perini et al., 2016), others reported no effects on
motor skill acquisition (Singh et al., 2016; Snow et al., 2016). One
study by Singh et al. (2016) reported worse online learning in the
AEX group compared to a resting control group in a bimanual
targeting task, and this was only seen for movement trajectory
but not for response time and accuracy. Our study involved PD
patients, and it is suggested that age and memory level may
moderate the effect of AEX on online and offline motor learning
(Roig et al., 2016). Thus, the results are difficult to relate directly
to previous research. However, our data suggest no benefit of
acute exercise bouts on online learning. More work on elderly
and physically impaired populations is necessary, since data in
this field is scarce.

Post hoc analyses indicated that the aerobic cycling reduced
performance improvements during late practice (acquisition
block 4–5). Inspection of the performance curves (Figure 2)
indicated that the lower learning rates in the later blocks were
likely attributed to rapid initial improvements during practice,
as performance gains from baseline to the first acquisition
blocks (block 1–2) appeared to be particularly high in the AEX
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TABLE 2 | Reaction time and perceived task demands.

Aerobic exercise Rest

Mean SD Mean SD p-value

NASA-TLX

Acquisition

Mental demand 9.4 5.9 8.5 5.4 0.53

Physical demand 10.6 4.5 10.5 4.3 0.96

Temporal demand 2.8 3.4 5.1 3.9 0.06

Performance 7.3 3.8 7.2 4.2 0.64

Effort 9.0 5.9 8.9 6.0 0.93

Frustration 3.5 3.6 4.3 4.8 0.83

RTLX 7.1 2.9 7.4 3.6 0.74

Retention

Mental demand 7.9 5.3 7.7 5.1 0.92

Physical demand 8.3 4.5 10.4 3.5 0.28

Temporal demand 3.4 2.7 4.9 3.1 0.17

Performance 7.5 5.3 7.5 5.4 1.00

Effort 10.2 5.3 10.6 4.6 0.72

Frustration 3.4 3.3 5.9 5.0 0.20

RTLX 6.8 3.3 7.8 3.2 0.31

Simple reaction time

Pre, ms 334.5 31.2 330.0 37.23 0.71

Post, ms 325.6 37.8 328.0 34.43 0.85

Change from Pre, ms −8.9 26.1 −2.0 35.56 0.53

Pre = prior to experimental stimulus (aerobic exercise, rest); Post = immediately following experimental stimulus (aerobic exercise, rest); RTLX = Raw Task Load Index.

condition. Several reasons may explain this finding. First, patients
already demonstrated a high performance level in the balance
task at baseline (AEX: 19.4 ± 5.1 s, REST: 20.9 ± 6.1 s).
Consequently, potential for further improvement was limited,
and the rapid initial skill gains in the AEX condition may have
impeded additional improvement in the later phase of practice.
Establishing baseline performance on the acquisition day may
have also contributed to this fact. Further, results from the NASA-
TLX indicated that patients perceived task difficulty relatively
low compared to other studies (Akizuki and Ohashi, 2015). It
is possible that the rapid increase during early practice in the
AEX condition, in combination with a generally low level of
difficulty, led to reduce task challenge, and consequently to a
ceiling effect that may have prevented further online learning
gains. Another explanation might be the specific characteristics of
the study sample, as participants were older adults aged between
50 and 80 years. Given their Parkinson’s disease, they further
presented moderate levels of motor impairment and a reduced
exercise capacity. Thus, the limited learning gains particularly
during late practice may have also been attributed to physical
or mental fatigue. As both cycling and balancing involve similar
muscle groups of the lower extremity, muscular fatigue may have
negatively influenced performance during later practice trials,
particularly the performance decline in blocks 3–5 of acquisition.
In addition, the 30-min cycling exercise prior to skill practice may
also have increased mental workload with increasing practice
time. This seems plausible, since several patients demonstrated

first signs of cognitive decline, which has been associated with
increased mental effort in performing tasks and difficulties in
maintaining concentration (Friedman et al., 2016). However, we
found that patients’ self-reported level of mental or physical
workload (NASA-TLX) throughout the practice session was
moderate and did not differ between both conditions, thus
making this explanation unlikely.

Noteworthy, all studies that found beneficial effects of an acute
AEX bout on online learning applied a motor skill that required
the control of only a few effectors (muscle groups). In contrast,
the balancing task implemented in our trial requires the control
of multiple effectors and the integration and coordination of
extensive perceptual information. Previous studies investigating
the effects of an acute AEX bout on learning of motor skills
requiring the control of multiple effectors were also not able to
find advantageous effects (Singh et al., 2016; Helm et al., 2017;
Charalambous et al., 2018). As discussed in a meta-analysis by
McMorris et al. (2015), the prefrontal cortex is mainly involved
in the control of multiple effectors as well as the integration
and coordination of perceptual information. Further, it has
been reported that performance increase in the stabilometer
task correlates mainly with changes in the prefrontal cortex
(Taubert et al., 2010). Besides the beneficial effects of an acute
AEX bout on learning related structures, the AEX has shown
to have negative effects on prefrontal cortex activity, due to an
increase in catecholamines (Arnsten, 2009, 2011). Consequently,
the beneficial effects of an acute AEX bout on online learning
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FIGURE 2 | Motor skill performance. (A) Motor skill performance (time in balance) during acquisition (A1–A5) and retention (R1–R5); (B) online skill gains illustrated
as change from baseline block to first (A1) and last (A5) acquisition block, ∗significantly different from baseline (paired t-test p ≤ 0.036); (C) motor skill retention
illustrated as change from last acquisition block (A5) to first (R1) and last (R5) retention block, ∗significantly different from baseline (paired t-test p ≤ 0.036),
#significant difference between aerobic exercise (AEX) and REST condition (F1,32 = 10.734, p = 0.003); error bars indicate 1 SE.

may not apply for skills requiring a higher prefrontal cortex
involvement.

Effect of Aerobic Exercise on Offline
Motor Learning
A single bout of moderate-intensity cycling substantially
improved offline motor skill learning in PD, and the effect
size indicated that this effect was large. While AEX resulted
in preserved skill levels after 24-h, performance decreased
significantly in the REST condition. With this finding, our data
are in line with a great deal of evidence showing exercise-induced
improvements in motor memory consolidation in healthy young
individuals (Roig et al., 2012; Thomas et al., 2016a,b; Lundbye-
Jensen et al., 2017; Dal Maso et al., 2018; Ferrer-Uris et al., 2018).
Recently, similar findings have been reported in a sample of
elderly stroke survivors (Nepveu et al., 2017). Consistently, these
studies indicate that a single bout of AEX can positively affect
motor memory consolidation following initial practice.

This finding has strong implications for clinical practice and
neurorehabilitation, as the practice and (re-)learning of motor
skills (e.g., gait, balance) is an essential component during all
stages of motor rehabilitation (Abbruzzese et al., 2016). To the
best of our knowledge, we were the first to demonstrate improved
motor memory consolidation induced by a single bout of exercise
in PD patients. Recently, Duchesne et al. (2015, 2016) showed
improved motor memory function in PD patients following
12 weeks of aerobic training. However, the immediate effects

of acute exercise bouts on skill learning have not yet been
investigated in this population. The present data suggest that
AEX is effective in enhancing motor memory consolidation in
PD. PD patients have particular deficits in consolidation and
switching to the autonomous stage of learning compared to
healthy adults of similar age (Nieuwboer et al., 2009; Clark
et al., 2014). This is attributed to the loss of dopamine in
the caudal basal ganglia (Petzinger et al., 2013), which affects
striatal structures involved in the early consolidation (associative
striatum) and the development of automaticity (sensorimotor
striatum) (Doyon et al., 2009; Beeler et al., 2013). Consequently,
our data suggest that acute AEX is an effective strategy to
counteract these deficits, which is very promising given the
potential impact on motor rehabilitation.

Several mechanisms may explain the enhancing effects of
acute exercise bouts on motor skill consolidation (i.e., offline
learning). On the molecular level, increased catecholamine
levels (i.e., dopamine, adrenalin, noradrenalin) have been
demonstrated following acute bouts of AEX (Winter et al.,
2007; Taubert et al., 2015), and were associated with improved
learning outcomes in humans (Cahill and Alkire, 2003). Even
more importantly from a PD perspective, dopamine is a key
facilitator of neuroplasticity and memory (Hosp et al., 2011;
Beeler et al., 2013; Rioult-Pedotti et al., 2015), and was recently
suggested to be involved in the exercise-mediated increase of
memory consolidation in healthy individuals (Winter et al.,
2007; Mang et al., 2017). PD patients demonstrate disease-
related dopamine depletion and associated dopamine-related
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aberrant motor learning (Beeler, 2011; Beeler et al., 2013). Thus,
our findings may indicate an exercise-induced upregulation of
patients’ dopamine levels, which would explain the improved
learning outcome (Petzinger et al., 2013; Jakowec et al., 2016).
This is supported by the work of Beeler (Beeler, 2011; Beeler et al.,
2013), who suggested that skill practice during peak dopamine
levels, as it would theoretically be the case immediately following
acute AEX, might allow a relatively normal corticostriatal
plasticity and consequently a relatively healthy motor learning
behavior. However, since we were not able to assess dopamine
levels or to test patients concurrently in ‘off ’ medication state, this
remains speculative and needs further exploration in future trials.

Additionally, AEX leads to an elevation in neurotrophic
factors, such as BDNF, which are involved in the memory
formation process (Knaepen et al., 2010; Szuhany et al., 2015;
da Silva et al., 2016; Hirsch et al., 2018). Consequently, it has
been suggested that the positive effect of AEX on memory
consolidation may be linked to increased BDNF expression
following exercise, thus promoting synaptic plasticity and long-
term potentiation (Taubert et al., 2015). Further, BDNF is also
heavily discussed in the context of neurorehabilitation in PD,
since BDNF level increases and concurrent motor improvements
have been found both, in PD animal models as well as humans
in response to exercise (Svensson et al., 2015; Hirsch et al., 2018).
Consequently, the enhanced skill consolidation found following
AEX in the present study could have been the result of increased
BDNF availability during the post-exercise phase. However, the
relation between elevated neurotrophins after AEX and improved
motor learning is ambiguous. While some studies were able to
find a relationship in young adults (Skriver et al., 2014), others
failed to find associations, even though reporting elevated BDNF
levels after exercise bout (Mang et al., 2014; Helm et al., 2017;
Charalambous et al., 2018). As BDNF seems to be connected
to lactate concentrations in the blood (Rojas Vega et al., 2006;
Rojas Vega et al., 2012), a dose-response relationship between
AEX intensity and BDNF release is suggested. The fact that we
found positive effects already with moderate-intensity AEX may
indicate that this was sufficient to induce a considerable release
of BDNF in PD patients, which would be supported by other
studies documenting BDNF-response in neurological conditions
(Gold et al., 2003). In addition to its trigger function, it has been
suggested that the accumulated lactate due to the AEX can be
metabolized by the brain and may serve as an energy source
(Dalsgaard et al., 2004; Kemppainen et al., 2005).

On the systems-level of brain organization (Voss et al.,
2013), our findings of improved offline learning might indicate
an increased corticomotor excitability during skill practice.
Exercise-increased blood lactate has been associated with
enhanced corticospinal excitability (Coco et al., 2010), and
this was associated with offline motor learning gains (Singh
et al., 2014; Ostadan et al., 2016). However, findings are
inconsistent, as some studies were not able to find changes
in corticomotor excitability with AEX in healthy young adults
or stroke survivors (McDonnell et al., 2013; Nepveu et al.,
2017; Stavrinos and Coxon, 2017). Increased intra-cortical
excitability induced by reduced GABAA synaptic inhibition was
also associated with offline gains in motor learning (Nepveu

et al., 2017; Stavrinos and Coxon, 2017), which could be
another explanation for the improved learning outcome in our
study. Lastly, recent studies reported indicators of an exercise-
induced increase in functional connectivity of corticomotor
networks (Rajab et al., 2014), which were associated with
improved motor skill retention (Dal Maso et al., 2018). The
aforementioned findings suggest promising exercise-induced
brain-level mechanisms, which need further investigation to
be associated with improved motor learning outcome on the
behavioral level.

Limitations
Some limitations of this study need to be addressed. First, the
6-week washout phase of this cross-over trial was relatively
short, and significant carry-over effects existed. Consequently,
participants had a higher initial performance level during
the second experiment (T32 = −3.003, p = 0.005), and
this was associated with reduced skill improvement during
practice (F1,31 = 17.832; p < 0.001). However, since we
counterbalanced the order of experimental conditions, this
is unlikely to have affected our findings. Rather, it seems
possible that patients’ potential for further skill improvement
in the second experiment was limited, which could have
masked more pronounced effects. This would also explain
the ceiling effects that seemed to be present in this study.
Patients’ physical activity status and aerobic capacity varied
substantially (IPAQ range: 1,431.0–15,924.0 MET-min/week;
VO2max range: 17.1–35.4 ml/min/kg), which has been suggested
to influence the effects of acute AEX on skill learning. These
differences in fitness level could have led to variations in
exercise response and subsequent molecular mechanisms (e.g.,
expression of catecholamines or neurotrophins). On a similar
note, autonomic dysfunction is common in PD, and patients
present reduced peak responses in graded exercise testing
(Kanegusuku et al., 2016), which complicates accurate regulation
of exercise intensity. This could have caused additional variance
in individuals’ physiologic response to AEX and subsequent
effects on motor skill learning. The assessment of additional
physiological parameters (e.g., lactate, VO2) would have been
desirable, but was not possible in this study. Lastly, since
the learning task and the AEX bout (cycling) involve similar
muscle groups, this may have caused fatigue effects in these
muscles potentially explaining the performance decline during
late acquisition (blocks 3–5). Future studies should implement
upper extremity learning tasks to exclude this potential source of
bias.

CONCLUSION

Results from this pilot study suggest that a single bout of
AEX can effectively enhance motor skill consolidation
in PD patients. This was evidenced by improved offline
gains 24 h after acquisition, when skill practice was
preceded by 30 min of moderate-intensity cycling.
Our results are promising, since they demonstrate that
(re-)learning of motor skills in patients with existing motor
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control and learning deficits can be optimized by short bouts
of exercise. The regular practice of motor skills is a prerequisite
for maintaining independence and mobility in PD patients and
a core principle in neurorehabilitation, and our data suggest a
promising and convenient strategy to facilitate this process. More
work is needed to understand the underlying mechanisms, to
explore the effects of different exercise scheduling (i.a., timing,
intensity), and to investigate the potential for PD patients at later
disease stages.
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